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For a class of dynamical systems driven by chaotic impulses we give conditions for the occurrence of chaos
locking. It is shown how the concept of time-discontinuous coupling of two chaotic systems may lead to
generalized synchronization. The method of synchronization is interpreted as a nonlinear analog of the sam-
pling theorem. Furthermore, we examine the effect of amplitude quantization of the driving signal on their
synchronization. Even though two time-discontinuously coupled dynamical systems are no more exactly syn-
chronized when the driving signal is digitized, their trajectories are close enough to allow correct transmission
of digital information signals between them.@S1063-651X~96!07708-2#

PACS number~s!: 42.81.2i

Over the past few decades, there has been considerable
interest in the studies of chaos and its ubiquitous nature. This
is due to two facts. First, the study of chaotic behavior in
almost all fields of science is essential for an appropriate
description and modeling of various phenomena in nature
@1#. Second, nonlinear phenomena may lead to new applica-
tions in engineering. For example, recently there has been
considerable interest in potential applications of synchro-
nized chaotic systems in the area ofanalogcommunication
@2–4#. However, almost exclusively today communications
are digital. Motivated by this challenge—digital
communications—we discuss in this paper the question of
the exchange of digital information signals between two syn-
chronizedcontinuouschaotic systems.

The paper is organized as follows. First we develop a
general theory of driving~chaotic! systems by chaotic im-
pulses. As a consequence, a criterion for the occurrence of
generalized synchronization in unidirectionally systems
coupled at discrete times is given. Then we address some
questions related to synchronizing two identical systems by
chaotic impulses and finally we discuss the relevance of our
results to digital communication using chaos synchroniza-
tion.

Consider a drivenN-dimensional chaotic dynamical sys-
tem whose behavior is governed by

ẋ5F~x,sT!, ~1!

wherex is anN-dimensional vector andsT is a driving sig-
nal. We denote withx(t,x0) the trajectory of~1! based on the
initial condition x0 at t50. The driving signal sT is
a time sequence ofm-dimensional chaotic impulses:
. . . ,s(22T),s(2T),s(0),s(2T), . . . . Theimpulsess(nT)

PRm are produced through equidistant sampling of a chaotic
trajectorys(t). The dynamics of~1! is influenced by the se-
quence of impulsessT in the following way. Letx(T,x0) be
the position of the trajectoryx(t,x0) at time t5T. At this

moment the system is subject to an impulses(T) such that
the firstm componentsx1 ,x2 , . . . ,xm of the state vectorx
are replaced byxi(T,x0)5si(T). Put it another way, the dy-
namical system~1! oscillates freely and independently from
the driving signalsT except for the equidistant moments
tn5nT when a part@x1 ,x2 , . . . ,xm# of its state vectorx is
forced to a new values(nT). Throughout the paper this kind
of driving will be calledsporadic driving. The concept of
sporadic driving can be easily applied to iterated maps. Here
we focus only on time-continuous dynamical systems due to
the fact that circuit implementations of continuous systems
are much easier than those of iterated maps, which is impor-
tant when it comes to applications of sporadic driving in
engineering.

In order to put the description of~1! and the influence of
chaotic impulsessT in a more mathematical frame, we show
that ~1! can be described as follows. Let us decompose the
state vector of~1! into two partsu5@x1 ,x2 , . . . ,xm# and
w5@xm11 ,xm12 , . . . ,xN# and the vector fieldF into
Fu5@ f 1 , f 2 , . . . ,f m# and Fw5@ f m11 , f m12 , . . . ,f N#. Then
we can rewrite~1! as

u̇5Fu~u,w!1dT~ t !~s2u!, ~2!

ẇ5Fw~u,w!, ~3!

where dT(t) denotes a periodic sequence of Dirac pulses
with periodT, i.e., dT(t)5(n52`

1` d(t2nT). Integrating~1!
from time t5nT2« to nT1«, we find in the limit«→0 the
following description of the dynamics of~2! and ~3!. The
dynamical system~2! and~3! oscillates unforcedly and freely
except for the equidistant momentstn5nT when u(tn) is
forced to a new values(tn). Using the concept of asymptotic
stability @5#, the following theorem determines conditions for
the occurrence of predictable oscillations of~2! and ~3!.

Theorem 1. Consider the system~2! and~3!. Assume that
ẇ5Fw(s,w) is asymptotically stable when driven continu-
ously by s(t) and for initial conditionsw0PB,eqRN2m.
Then for the given drive signalsT there exists a valueTH
such that for allT,TH system~2! is asymptotically stable.

Asymptotic stability of ~2! means the following: the
driven system~1! ‘‘forgets’’ its history ~initial conditions
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x0) as time goes on and in the limitt→` its dynamics is
completely determined by the driving signalsT . In this case
we say that the behavior of~1! is lockedto the chaotic signal
sT . In the special case when a limit cycle behavior is forced
by a periodic sequence of impulses, phase locking occurs.
Clearly, when~1! exhibitschaos lockingthen its behavior is
predictable: driving with the same signalsT always results in
the same response of~1!. The proof of the theorem, which
follows from the analytical arguments of@9#, and the ex-
amples of chaos locking in other systems are planned to be
addressed in an extended version of this work@6#.

We illustrate the theorem through an example. In this ex-
ample a driving sequencesT of one-dimensional chaotic im-
pulses is produced through equidistant sampling of thex2
variable of a chaotic trajectory of the Ro¨ssler system

ẋ5R~x!, ~4!

whereR(x)5@21x1(x224),2x12x3 ,x210.45x3#.
SequencesT drives the Lorenz system

ẏ5L ~y!1@0,dT~ t !~x22y2!,0#, ~5!

whereL (y)5@s(y22y1),y1y31ry12y2 ,y1y22by3# with
s510.0, r528, andb52.66. In this example we perform
one directionaltime-discontinuouscoupling between two
different time-continuousdynamic systems~4! and ~5!. The
term dT(t)(x22y2) in ~5! leads toy2(tn) being forced to a
new valuex2(tn). In the time intervals between two succes-
sive kicks, the Lorenz system~5! behaves chaotically and
independently from~4!. Denotingw5@y1 ,y3# andu5@y2#,
one can readily see the compatibility of~4! and ~5! with ~2!
and ~3!. It is well known that thew5@y1 ,y3# subsystem of
the Lorenz system is asymptotically stable. Therefore Theo-
rem 1 ensures the existence ofTH . Numerically we have
found out that ~5! is asymptotically stable for
T,TH50.31. The asymptotic stability of~5! is illustrated in
Fig. 1, where the differenceuy(t,y0)2y(t,y08)u is shown for
T50.2. Herey(t,y0) andy(t,y08) denote two trajectories of
~5! based on two different initial conditionsy0 andy08 , while
the driving termsT is identical for both trajectories. The
difference between the two trajectories vanishes as time goes
to infinity, which means that~5! forgets its initial conditions
and followssT .

The theorem can also be related to the notion of general-
ized synchronization~GS! @7#. Two systems are said to have
the property of GS if a functional relation exists between the
states of both systems and the synchronized manifold defined
with this relation is an attractor. Consider the class of unidi-
rectionally coupled systems

ẋ5f~x!, ẏ5g~y,s!, ~6!

where s5h(x) is an m-dimensional vector function ofx.
Recently, a general criterion for the occurrence of GS in~6!
has been proposed@8#. This criterion can be generalized as
follows.

Corollary 1. Assume that the second system in~6! is as-
ymptotically stable when driven bys(t). Then there exists a
valueTH such that for allT,TH two systems

ẋ5f~x!, ẏ5g~y,sT!, ~7!

wheresT is produced through equidistant sampling ofs, have
the property of GS.

In other words, if GS occurs in~6!, then sporadically
coupled systems~7! have also the property of GS.

In the remaining part of this paper we address the case
whensT is produced by samplingu projections of solutions
of an autonomous copy of~2! and ~3!

u̇5Fu~u,w!, ẇ5Fw~u,w!. ~8!

In this case, the theorem is a generalization of the synchro-
nization method of Pecora and Carroll@2# and may be rewrit-
ten as follows.

Corollary 2. Consider system ~8!. Assume that
ẇ5Fw(u,w) is asymptotically stable when driven byu(t)
and for initial conditionsw0PB#RN2m. Then there exists a
valueTH such that for allT,TH sporadic driving of a copy
of ~8!

u̇85Fu~w8,u8!1dT~ t !~u2u8!, ẇ85Fw~w8,u8! ~9!

results in synchronization between~8! and ~9!, i.e.,
ux2x8u→0 whent→`.

In other words, if two dynamical systems synchronize for
a particular Pecora-Carroll decomposition@2# then there ex-
ists a nonzero valueTH such that sporadic coupling between
the two systems leads to their synchronization for all
T,TH .

The synchronization in the systems~8! and ~9! was con-
sidered by Amritkar and Gupte@9#. Corollary 2 might show
its usefulness in various scientific disciplines. A promising
area of application is communications because all proposed
communications systems based on synchronized chaos so far
consisted of pairs ofidentical dynamical systems. Now we
will illustrate Corollary 2 through an example based on the
Lorenz system. The driven system is again defined by~5!,
while the driving chain of one-dimensional chaotic impulses
dT(t)x2(t) is obtained from a copy of the Lorenz system
identical to~5! @without the termdT(t)(x22y2)]. From the
stability of the (y1 ,y3) subsystem of the Lorenz system and
from Corollary 2 it follows that there exists a maximal pe-
riod TH of dTH(t) that still allows the two Lorenz systems to
synchronize. Figure 2 shows the largest conditional

FIG. 1. Difference between two trajectories of~7! based on two
different initial conditionsy0 andy08 . The driving signalsT is iden-
tical for both trajectories.T50.2.
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Lyapunov exponent~CLE! @7# of ~5! versusT. All CLEs of
~5! are negative forT,TH50.45. The differentTH values
for the sporadically coupled Ro¨ssler-Lorenz and Lorenz-
Lorenz systems are due to the fact thatTH depends on the
driving signalsT . Through numerical simulations we have
checked the synchronization between the two Lorenz sys-
tems for different values of parameterss,r,b. For every set
of parameterss,r,b there exists a maximal distance be-
tween samples ofx2(t) that still allows synchronized motion
of the two Lorenz systems.

There is another possible interpretation of the synchroni-
zation between the two Lorenz systems. The responding Lo-
renz system interpolates the samplessT and pro-
duces an interpolated signaly2(t). If T,TH then the
interpolation is successful andy2(t)5x2(t), which means
that x2(t) is completely described by its samples
. . . ,x2(22T),x2(2T),x2(0),x2(T),x2(2T), . . . . Accord-
ing to thesampling theorem, any function of timef (t) that is
band limitedto B ~cycles/sec! is completely described by its
sample values every12B sec, the samples extending through-
out time domain@11#. One might wrongly draw the conclu-
sion that the power spectrumPx2

( f ) of x2(t) is band limited

to f TH51/2TH . However, power spectra of chaotic signals
are exponentially decreasing@10# and thus with infinite
width. Figure 3 shows the power spectrum ofx2(t). Fre-
quencyf TH51.11 is denoted in Fig. 3. A significant percent-

age ~30%! of the power ofx2(t) is contained out of the
frequency rangef.1.11. Despite the infinite width of

Px2
( f ), it is possible to interpolate the samples ofx2(t) be-

cause they are generated by deterministic ordinary differen-
tial equations~ODEs! that areknownat the response. The
sampling theorem proves that interpolation of the sampled
signal can be performed by passing it through an ideallinear
low-pass filter with limit frequency 1/2T. Therefore, Corol-
lary 2 is a counterpart of sampling theorem for chaotic sig-
nals: when one applies sporadic coupling then the sampled
signalsT should be processednonlinearlywith ~5! in order to
interpolate it between the samples. There is another interest-
ing consequence of the previous discussion. The valueTH
determines the minimum frequency bandwidth of the com-
munication channel modeled as an ideal low-pass filterf TH
that connects two chaotic systems and synchronizes them
through the concept of sporadic coupling.

Next we address the effect of amplitude quantization of
the driving signal on the synchronization of two chaotic sys-
tems. Here we will restrict our investigations to the simplest
quantizer~certainly not the best according to many criteria!:
a uniform scalar quantizer that divides the amplitude range
of the input signal intoq equal amplitude quanta each of
lengthD. The quantizer output signal is equal to the medium
value of the amplitude quantum to which the input signal
belongs. The amplitude range of the quantizer is
(2AQ ,1AQ). The quantized signal will be denoted as
x2q(t)5Q„x2(t)…, whereQ( ) denotes the operation of the
quantizer. In what follows, once again we time-
discontinuously couple two identical Lorenz systems. The
driving sequence of chaotic impulses is produced by equidis-
tant sampling of the quantized signalx2q(t)5Q„x2(t)…. The
response system is

ẏ5L ~y!1@0,dT~ t !~x2q2y2!,0#. ~10!

Infinite couplings at timestn5nT force y2(tn) to the value
x2q(tn), which is almost never equal tox2(tn). Thus, at the
coupling momentstn , x2 andy2 are not forced to be equal to
each other, but rather their difference is kept within the range
(2D/2,1D/2). As a consequence, the two Lorenz systems
never synchronize exactly, but their differenceux2yu is not
significant and is small enough not to preclude digital com-
munication applications. We have numerically solved ODEs
defining the two Lorenz systems and we have computed the
difference betweenx2q(tn) and y2q(tn)5Q„y2(tn)… in

FIG. 2. Dependence of the largest CLE of~7! on the coupling
periodT. The driving signalsT is obtained from an identical copy
of the Lorenz system.

FIG. 3. Power spectrum ofx2(t) normalized with its maximum
value.

FIG. 4. Information signali ~solid line! and recovered informa-
tion signal î ~dashed line! for systems ~11! and ~12! when
q5128,T50.04, andV i5$4D(2k11)uk528, . . . ,7%.
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100 000 sampling intervals forAQ525. An extended version
of the results obtained is planned to be presented somewhere
else@6#. As an example, numerical integrations have shown
that the differenceux2q(tn)2y2q(tn)u is always smaller than
4D when q5128 andT50.04. Such a closeness between
x2q(tn) andy2q(tn) enables us to construct the digital com-
munication system

ẋ5L~x!1@0,dT~ t !~s2x2!,0#,

s5x21 i ~modAQ!, ~11!

sQ5Q~s! ~ transmitter!

ẏ5L ~y!1@0,dT~ t !~sQ2y2!,0#,

y2q5Q~y2!, ~12!

î5SE@sQ2y2q~modAQ!# ~receiver!,

wheresQ is the transmitted signal andi is the information
signal. We emphasize that bothsQ and i are discrete-time
digital signals taking values from finite alphabets
Vs5$(D/2)(2k112q)uk50,1, . . . ,q21% andV i , respec-
tively. A new digit of the information signal is generated at
timesnT. The last equation in~12! denotes the operation of
a slicerSE( ) that chooses a digit from the alphabetV i that is
closest tosq2y2q(modAQ).

The result ux2q(tn)2y2q(tn)u,4D when q5128 and
T50.04 is still valid even after the insertion of the informa-

tion signal i . Let the information signali take values from
the finite alphabetV i5$4D(2k11)uk528, . . . ,7%, that is,
distance between the symbols from the alphabetV i is at least
2(4D). If q5128 andT50.04, thenî5 i after afiniteperiod
during which ~12! sufficiently approaches the state of the
driving Lorenz system~11!. Figure 4 illustrates theexact
recovery of the information signal after a finite period
t50.56. We stress here that alternatively one could also use
sQ in the first equation of the transmitter instead ofs. This
leads to perfect synchronization, but it may also turn the
chaotic dynamics of the transmitter into a periodic motion. In
such cases a new set of parameter values has to be found
with chaotic dynamics. We will discuss this equation also in
@6#.

Let us briefly summarize the results presented in this pa-
per. We have proposed the concept of sporadic driving and
have given conditions for the occurrence of chaos locking
and generalized synchronization. We have shown thattime
discretizationof the driving signal~sporadic coupling! does
not destroy the synchronized motion of two chaotic systems.
To a certain extent the synchronization is also robust with
respect to theamplitude discretization~quantization! of the
driving signal. Through the concept of sporadic coupling one
can synchronize chaotic systems connecting them with a
band-limited channel. The robustness of the synchronization
to the quantization of the driving signal is large enough to
allow digital transmission of a digital information signal be-
tween two chaotic systems.
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